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SUMMARY

The purpose of this paper 1is to 1llustrate an application
of linear programming to thz problem of allocation of alrcraft
to routes in order to maximlze expected profits when there 1s
uncertain customer demand. The approach 1s intuitive; the
theoretical basis of thils work is found in an earlier study.
The allocations are compared with those obtained under the
usual procedure of assuming a fixed demand equal to the expected
value. The computational procedure 1is similar to that of the
fixed—demand case, with only slightly more computational effort
required.

This paper is 1intended both for readers interested in
routing problems (and analogous resource—allocation problems)
and for those interested 1n studyling an example of an appli-

cation of linear programming under uncertainty.
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THE ALLOCATION OF AIRCRAFT TO ROUTES—AN EXAMPLE
OF LINEAR PROGRAMMING UNDER UNCERTAIN DEMAND

1. INTRODUCTION

There are many business, economic, and military problems
that have the following characteristics 1in common: a limited
quantity of capital equipment or final product must be al-
located among a number of final-use actlivities, where the level
of demand for each of these activlities, and hence the payoff, 1is
uncertalin; further, once the allocation 1s made, it is not eco-
nomically feasible to reallocate because of geographical sepa—
ration of the activitles, because of differences in form of the
final products, or because of a minimum lead time between the
decislon and its implementation. Examples of such problems are
(1) the schedulling of transport vehicles over a number of routes
to meet a demand in some future perlod and (2) the allocating of
quantities of a commodity at discrete time Intervals among
several storage or distribution points while the future demand
for the commodity 1s unknown. It 1s assumed, however, that
demand can be forecast or estimated ag a distribution ot values,
each with a specitfied probability of being the actual value.

The general area where the technlques of thls paper apply
may be schematized broadly as problems where:

1. Alternative sets of actlvity levels can be chosen

consistent with given resources.
2. Each set of chosen activity levels provides the
facilities or stocks to meet a demand that 1s 1itself

unknown but that nas a known trequency distribution.
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5. Prof'lus depend on Lhe costs of the facillties, or
stoexs, and on the revenues from the demand.
n . The yoderal objective s to determine that set of

actlvity levels that mavirlzes protits.

The vaner -mtitled "Linear Programming under Uncertalnty

[wj Jornh tne thieoretleal basls for the present work. Our pur-

coge Le Lo tlhvetrate tne procedural steps witn the example

Loty trnoiael, crlolnelly prompted the retfeorenced theoretical

AOork In tnio areas Thas, 1ELLle In the way ol rirorous theopy

w1l be attempted In tnls paper, althourn cach step will be

gustliics invaltluvely.

T metho!d 1o expliadlned by the use of a modea tor routing

alrerart.  Jeccreal Lypes of alreraft are ollocated over a number

S0 routes; oo onontnly gemand for service over eoacn rodtle Ls

assaed Lo i dnown only as o oa distelbutlon of probavle velic.s,

Trio alreraft cr: so allocated as Lo minkmize the sun of (i) the

cusl O perioti b

oothe Lransportation and (b)) tne 2xpectedl value

o Lhe reveme logst throuweh the fallure to serve W1l the trafri.

Lo, cotulliy develops.
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It 13 sugpgested that the reader make sensitivity tests by modi-
{fying the demand distributions given in the illustrative example.

Passenger demand, of course, occurs on a day-by—day—in
fact, on a fllght-by-I1light basis. The assumed number of pas—
sengers per alrcraft of a glven type per flight on a gilven route
may be thought of as an 1deal number that can be increased
slightly by decreaslng the amourt of air freight when this 1s
Indicated, and by "smoothing" the demand through encouraging
the customers to take open reservatlons on aiternative flights
a8 opposed to less certaln reservations on desired flights. 1In
splte of these possible adjustments, traveler preferences and
the 1ncvitable last-minute cancellations do cause loss of pas—
senger—carrying capabllity. However, the best way to reflect
these effects of the daily variations in demand are beyond the
gcope of this paper. For our purpose here, elther the alrcraft
passenger—carryling capablility or the demand may be thought of as
adJjusted downward to reflect the loss due to dally varlatlons
of demand.

The method employed 1s simple, and the example used can be
solved by hand in an hour or two. Larger problems can be solved
with computing machines.

In a previously published paper [1], the method was appllied
to the same example, assuming the demand on each route to be

known;* the present paper continues the analysis, showing how

*This was equivalent to using the expected value of demand,
rather than taking account of the whole frequency distribution,
as 1in the present paper.
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Lo handle a frequency dlstribution of demand relative to each
route. A different allocation 15 found to be optimal in this
case .

We shall row describe the problem, briefly indicate the
nature of the solution based on expected values, show the method
of" solvlng the problem usling stochastlic values for demand, and

flnally compare the two solutlions.
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2. REVIEW OF FIXED-DEMAND EXAMPLE

The flxed—demand example that we are using to illustrate
the method takes a fixed [leet of four types of aircraft, as

shown in Table 1.

Table 1

ASSUMED AIRCRAFT FLEET

Number
Type Description Avallable
A Postwar 4—engline 10
B Postwar 2-englne 19
C Prewar 2-engline 25
D Prewar A4—enginc 15

These alrcral't have differences in speed, range, payload capacity,

and cost cnaracteristics. The assumea routes and expected trafflic

loads (Lhe distribution of demand will be discussed later) are

igiven In Table 2.
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Table 2

TRAFFIC LOAD BY ROUTE

Expected Price
Routea Number of One—way
Route Miles Passengers Ticket ($)

(1) N.Y.-L.A. (1—stop) | 2,47 24,000 150
(?) N.Y.-L.A.  (2-stop) | 2,474 12,000 150
(5) N.Y.-Dollas (O-stop) | 1,381 18,000 70
(W) N.Y.-Dallas (1-stop) 1,439 9,000 70
(4) N.Y.-Boston (O—stop) 185 60,000 10

orriclal Alrline Guide, July, 1954, p. 270. The New York—
Los Angeles routes are via Chicapo and via Chicago and Denver;
Lhe stop en route between New York and Dallas 1s at Memphis.

DThls 1s the expected number of full one-way trips per
month to be currled on each route. If a passenger gets off
en route and 1s replaced by another passenger, Lt 1s counted
as one full trip.

Since this paper proposes to i1llustrate the applicability
ol a4 method ot solving problems In which several reallstic ele-
ments are consldered, it 1s asswned that not all alrcraft can
carry thelr rull loads on all routes and that the obtalnable
utilizatlion varles from route to route. Speciflically, Type B
Is asswned to be able to operate at only 79 per cent payload on
Route 3, and Type D at 80 per cent on Route 1; Type C cannot
tly elther Route 1 or Route 5, and Type B cannot {1ly Route 1.
Utllization is defined as the averave number of hours of useful

work pertormed per month by cach alrcraft asslgned to a particular




route.

1 and 2, 285 on Routes 3 and 4, and 240 on Route 5.
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Utilization of 300 hours per month i8 assumed on Routes

The assumed dollar costs per 100 passenger-miles are shown

in Table 3.

of the alrcraft and ground facilities.

These 4o not Include any capital costs such as those

They represent variable

costs such as the cost of gasoline, salaries of the crew, and

costs of servicing the ailrcraft.

A second sort of "cost" is

enough aircraft are assigned to

demand.

price of a one—way ticket shown

In this case, the loss

Table 3

DOLLAR COSTS

the loss of revenue when not
the route to meet the passenger
of revenue 18 the same as the

in the E row of Table 3.

Route
1 — N.Y. 2 — N.Y. 5> — N.Y. 4 — N.Y. 5 - N.Y.
Type of to L.A. to L.A. to Dallas |to Dallas | to Boston
AMrcraft | 1-stop ($)|2-stop ($){ O—stop ($)|1~stop ($)|O0-stop ($)
Per 100 Passenger-miles
1 -A 0.45 0.57 0.45 0.47 0.64
2 —B — 0.04 0.83 0.63 0.88
5 —C - 0.92 - 0.95 1.15
4 - D 0.74 0.61 0.59 0.62 0.81
Per Passenger Turned Away®

5 - E 150 150 70 70 10
(13) (13) (7) (7) (1)

aFigures shown in parentheses are 1000's of dollars lost per

100 passengers turned away.

are measured 1n units of hundreds.)

(Throughout this paper, passengers
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Based on the speeds, ranges, payload capacities, and turn-
around times, passenger—carrylng capablllities were determined.
The resultant potential number piJ (in hundreds) of passengers
that can ve {lown per month per alrcraft of type 1 on Route J
15 shown 1in Table 4; see the staggered upper right figure in
chcn box. By ﬁu]tiplying these numbers by the corresponding
costs per 100 passenser—iniles ¢given In Table 5 and by the number
ot miles glven In Table 2, the monthly cost per aircraft can
1180 be obtained. This 1s glven in the lower lef't fipure ¢

1J

Ln cach box; cxpllclitly, c 1s the cost In thousands of dollars

1)

per montn per alreraft of type 1 asslisned to the Route j. The
roevenue lossoes x;J’Ln Lthousands of dollars per 100 passcngers
)

not carried, arc riven In the E row of Table 4; {inally, we de—

*

flne p, , = 1. The stagegered layout ol Table 4 was chosen 3o
Ju

as Lo ldentify thz correspondlin Jdata Tound Ln Table ©; the

latter 15 the work sneet upon which the entlre problem 1s solved.

The baslc problem 1s that ot determining the number of ailr-
craft of cach type to asslizn to each route conslstent with alr—
craf’t avallabilities (Table 1) and of determining how much rev-
cnue will be lost dug to failure of allocated alrcraft to nmect

passensor demand on varlous routes (Tables 2 and 3). Since many

alternative allocations are possible, our specific objective wlll

be to f'ind that allocatlon that minimlzes total costs, where
costs arc deflned as operating costs plus lost revenues based

on the cost factors siven in Table ).

X
This will wake 1t casler.to form the passenser—-balanc. or
"eolwnn" cqurtions (2).

1
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Table 4
PASSENGER-CARRYING CAPARILITIESa AND COSTSb
Route
1 — N.Y. 2 — N.Y. ) — N.Y. 4 — N.Y. 5 — N.Y
Type of to L.A. to L.A. to Dallas | to Dallas | to Boston
Alrcraft 1—-3top 2—stop O—stop l-stop O-stop
Per Alrcraft per Month
1 —A p11=16 P12=19 p13=28 P14=25 p1s=81
C11=]8 C12=21 013=18 Cl4=16 C15=10
Z = 8 i Pa22=10 Paa=1l P24=15 pas=57
Coa=1H Caa=10 Cogq=14 Cas=9Y
> -C * Paz2=H * pPaa=7 pas=29
c32=10 C34=9 Cas=0
4 - D P41=9 P42=11 pPa3=22 Daa=17 Pas=55
Cay=17 C42=10 Cqa=17 Caqa=1Y C4s5=10
Per 100 Passengers Not Cerried (Losses)
5 - E Psy=1 Psa2=1 Psa=1 Psa=1 Pss=1
Csy=1) Csa2=1) Cs3=7 Csa=1 lcss=1

aCapabiliU@s piJ are measured in hundreds of passengers.

bCosts C

1/

are measured in thousands of dollars.
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This {ixed demand model may be formulated mathematically
as » linear prosranming problem,  Let x denote the unknown

S
R th ) th !
nunber of alrcratf’t ot tne {1 type assiyned to | route, where

O Y T 1o ¢ Y S L S o I Xin denotes the
. . o . . th .
nunber of surplus or unallocated aliverat't o the | type, then
b () nrlow alates that the sum ot s llocated and unallocated
' () . [l L” . N
clreradt ol tne Lype accounts Uor tne total number ay ol
avallable alrperaft o thits typeo 10 Cdenotes tne number

‘K;II]

LRV

SR bR , : . cLn . i

Ol passenrers o hapdeead tarned eeay Srom tne S route per

month, tnen By, (2) states Lhat Lhe sum o the passenrer—carrying
: . . . Lh

capabllitiecs o all alrerat’t allocated Lo the | route, plus

the unsatisticd demand, accounts tor the totat demand d, on the

J
route.  Relatlon (4) states thal oo Ui peantbities xl

1

must be cltner poslitive or zero.  Fioally, §0 :ln(i =1, 2, ..., m)
: : . n o,

18 the montnldy cost ol recdntolndneg an olrcrat of the Lype

when not Inouse, then Lne total cost o is the sum ot all the

Inalvidonl opervabting costs plus the revenue lust by unsatisficed

enands o . & . , a5 o dven ooy, ()

e N N .y )
iR il T
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FIXED-DEMAND MODEL

[SES _
| Find numbors xU
I
|
|

the followling conditions.

, and the minlmum value of z, satisfylng

(1) Roa Sums:

(2) Column Sums:

C (W)
1=1 J=1

L _

SR Xi5 * + Xip = &y
(y =1, 2, ..., m), _ f
|

)ljxlj + pHJX2J + oo+ pmJXmJ = dj
(J =1, 2, ..., n=1)}, '
Klj > 0, |

Any sct of assignments Xy satisfying Egs. (1), (2), and (3)

15 termed a feaslble solution, and a feasible choice that min-

imizes the total cost z of tnc asslgnment 1s called an optimal

(feasible) solution.

Table 9 shows the
based on fixed demand,
values assligned to the

upper left of cach box

optimal assignment of alrcraft to routes,
as developed In the earlier study. The
UNKNoOwWns xij appear underlined in the

unless le = 0 in which case 1t 1s omitted;

the entlre layout takes the form:

1y
pij

1J
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The sums by rows of the xlJ entries in Table % equated to avall-

anollities yleld Eqs. (1). The sums by columns of the x welphted

1J
by corresponding values of plj equated to demands yield Eqs. (2);
Lhe x1J wWwelphted by corresponding, CLJ and summed over the entilre
table yleld Eq. (4). As noted earlier, Table 5 1s actually the
#ork sheet upon which the entlire problem 1s solved. Later we
shinll dlscuss a revislon of thils work sheet for solving problems
with varlable demand. All Uipgures in the table, except for the

upper lef{t entrieg x and values of the so—callcd "implicit

1)

prices” Uy and vJ shown 1n the marging, are congtants that do
not chanye durlng the course of computation. The values ol the
variables le, Uy and VJ’ however, will change during the course
ol' successive iteratlons of the simplex method as adapted for
this problem. For thils reason it 18 customary to cover the work
sheet wlth clear acetate and to enter the variable information
with a gresse pencill so that the marks can be caslly crased;
alternatively, 4 blackboard or semitrangparent tissue-papev
overlays can be used. The detalled rules for obtalining the
optlanal sclution shown arc glven in [1] and will not bo repeated
here ., instoad, a more general set ol rules for the uncertain-—
Jdemand case will be pilven; these, ot course, could be used in
particular for the expected—=demand case.

In the tollowing outline we have a convenlent swnmary that
scerves to identiry and define the numerical data entered 1n

Table Y and to glve the test tor optimality.
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Table H
OPTIMAL ASSIGNMENT FOR FIXED DEMAND
Operating Costs and Lost Revenues = $1,000,000
Route
(1) (2) (5) () (5) (6)
Type N. Y. N. Y. IN. Y. N. Y. N. Y. | Sur- Alr- Im—
of to to to to to plus craft plicit
Alr— L. A, L. A. [Dallas |Dallas | Boston|Air- Avail- | Prices
craft |t-stop |2-stop |{O-stop | 1-stop | O—stop|craft |[able Uy
E 10=4a,
(1) A 16 14 28 2 81 q
18 21 18 16 10 0 —171
8 2 ° 19=az
(2) B * % 104 14 15 57 0
19 16 14 0 - 91
Z;Q 17 .2 PH=a3
(j) C * % 5 * ¥ 7 29 0
10 9 6 0 — 23
10 5 15=a,
,(M) D 9 11 22 17 55 O
17 16 17 15 10 0 — 39
m *
(5) E 1 1 1 1 1 0
Deficit! 153 15 7 7 1 0 0
Demand
dJ 250 120 180 90 600 4
1m—
pliCit - } !
Prices 11.8 0.0 .8 1.33 1 0
Yy
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! Constants .

SUMMARY

A= number of avallable alreraft of
Lypoe 1
dj = expeclted passenper demand in
‘ peromonth on Roube !
pil = pasacnger—carvylng capabliity

§

Lype L asslipened Lo Route

(“m+1 P I by delinition)
L

100's per month per alveraf't of

1001

In

T

Ly o = costs In 1000's of dollars pe
J . :
month per alrerat't of Lype 1
asslened to Route § (e
: q ) “":r.j
per 100 passenicers
turncd away)
! Kl] sntries: X nunber of alrceraflt of type L
o ' asslpned to Route [ (x_'] 1o
| of pussengers turncd 0
; aviay )
i

1.

OQnitted x Entrics:

X = 0 1 upper left entry In box Ju

1) missing,

100!

Impliclt Prlcees:

ul and Vj are determined such that
Uy by vy ey for (1,J) boxcs wi

Xl,J

Note: um+1 = vn =0

> O—l.e., with underiined entrics.

th

—— 4

Test for Optlmality:

Solution 1s optimal if, for all (1,

the relation uy piJvJ < clJ holds

)
(% !
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5. EXTENSION OF EXAMPLE TO UNCERTAIN DEMAND

Up to this point the problem is identical with that de—

scribed and solved in our previous paper. Now, to introduce

the element of uncertain demand, we assume not a known (expected).

demand on each route but a known frequency distribution of demand.

The assumed frequency distributions are shown in Table 6. Thus
on Route 9 (N.Y. to L.A. — 2-stop) elther 5,000 or 15,000 pas—
sengers will want transportation during the month, with prob-
abilities 50 or 70 per cent respectively. The assumed traffic
distributions are, of course, hypothetical to illustrate our
method. The demand distributions on the flve routes vary over
wide ranges and have different characteristics; Route 1 is flat,
Route 2 1s U-shaped, Routes 3, 4, and 5 are unimodular but have
differing degrees of concentration about the mode. Route 4 has
a distribution with a very long tall that may reflect a real-

istic traffic situation.
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Table ©
ASSUMED DISTRIBUTION OF PASSENGER DEMAND
%hJ = Probabllity of Demand th
Probability
Probability | of Equaling
Passenrers Approx. Mean of Passenger | or Exceeding
Route | (in hundreds) (in nundreds) Demand - Demand
200=d11 0.2 = )\11 1.0 3 Yll
220 = d21 0.0l) = )\21 O.H : U;}\
1 —A 20 = da, 250 0.5 = A31 0.7 = ¥4,
|
270 = da, 0.2 = 7y | 4
| .
500 = ds, 0.2 =725y | 0.2 =g,
0 = dy» 3 =M | 1.0 12
2B 150 = daa L2 T o=Paa g 0.7 = ¥a
140=d13 0.1 —:/\\1J e = 0.3
100 = daa 0.2 =N, ) = T,y
5 = 180 = das 180 0.4 = Mg 33
?_OO = d43 02 =7\*,3 | O J = 43
220 = dsa 0.1 ="ga 0 = O0gq
10 = dy4 0.2 = Ay | 0 - b’\”'
50 = dog 0.2 =2y | 0.4 Yo4
L - D 80=d34 90 0.3 —?\34 ; ] 3534,
100 = dga 0.2 = }\‘»,4, i 0 R
jHO = d54 0.1 = ?\5.‘ 0 = .554,
| )
580 = dis 0.1 = A5 1.0 =¥,
5 — E 600 = das 000 0.8 =Mag 9 =d,4
020 = das 0.1 = 7\35 1 = 3'35
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To illustrate the essentlal character of the linear—pro-
gramming problem for the case of uncertain demand, let us focus
our attention on a single route—say, Route 1—with probability
distribution of demand as given in Table 6. Let us suppose that
~drcraft asslgned to Route 1 are capable of hauling 100 Y, pas-—
sengers. The flrst 200 units (in hundreds of passengers) of
thls capablility are certaln to be used, and revenues from this
source (negative costs) will be 15 = k; units (in thousands of
dollars) per unit of capability. The next 20 units of this
capablility will be used with probability ¥,, = 0.8. Indeed,
80 per cent of the time the demand will be 220 units or greater,
while 20 per cent of the time it will be 200 units; hence, the
expected revenues per unlt from this increment of capability 1s
0.8 x 15 = 10.4, or 10.4 = k¥, units. On the third increment
of 30 units (22,001 to 25,000 seats) the expected revenue 1s
0.7% x 15 = 9.8 = k93, unlts per unit of capabllity slnce there
is a 29 per cent chance that none of these units of capability
will be used and 7Y per cent that all will be used. For the
fourth increment of 20 units (29,001 to 27,000 seats) of capability
the expected revenue 1s 0.4 x 13 = 5.2 = k¥4, units per unit of
capability, while for the fifth increment of 30 units (27,001 to
50,000 seats) 1t 1s 0.2 x 15 = 26 = k,¥5, units per unit. For
the sixth increment, which 1s the number of units assigned above
the 30,000 seat mark, the expected revenue is 0.0 x 15 = O per
unit since it 1is certain phat none of these units of capabllity
can be used. It 1s clear that no assignments above 50,000 seats

are worthwhile, and hence the last increment can be omitted.

—
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The index h = 1, 2, 3, 4, 5 will be used to denote the 1st, 2nd,
., Hth increment of demand.

The number of assigned units in each increment, however,
can be viewed as an unknown that depends on the total (passenger—
hauling) capabllity assigned to Route J = 1. Thus if the total
assirned 1s Y, = 210 units of capablility then the part of this
total belongling to the rirst increment, denoted by yiy, 1o
Vi = 200 and the part belongdnis to the sccond increment, de—
noted by yo,, Is yoy = 10; the 2rmounts in the hisher increments
Are Yy T O for L = 5, 4, %, To revicw, thc passenger—carrying
chpibllity YJ 1s determined by the nuwnber of alrcraft assipgned

to Route j, s0 Lhat

{ —
() Ty T by Ry g Ko R Ky Dy Xy

On the other hand, Y, 1tselfl breaks down into flve 1lncrements

J

Pyt Yy

2J a4

(v) Yom Yy gyt

tor Routes J = 1, 3, 4, and correspondingly fewer for J = 2, 5.
Regsardless of the total YJ, Lhe amount th beloneding Lo cach
Increment 1s bounded by the total size th of that increment;

the latter, howover, 1s simply the chanege 1in demand level, so

that

(7) O <y < d]J = by
0 < ypy Sy = dyj = by,
O <y Sdyy =ty =0y
0 < qu < d“J - le 2 bNJ’
0 ¥y L5 = dyj = Ps
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The total expected revenue from Route J is, therefore,
8 k(¥ + ¥ oo + U
() Sy Yay H %oy Yoy e Ty s y)s

where kJ 1s revenue (in thousands of dollars) per 100 passengers

carried on Route J, and where, as seen in Table 6,

(9) 1 = KlJ = AlJ + Agj + AjJ + Auj + ASJ’
I 7 Nog Y Asp TRy F Ag g
F55 " Agg t Mgyt Ag g
Tug ~ Mg ¥ oy
XzJJZ 7\5.)

For cxample, the total expected revenuc for Route 1 is

(10) 15(1.0y1, + .Byi12 + .79y13 + Hy1q + .2y15) -

The most lmportant fact to note about the lincar form (10) is
the decreasc In the successive values of the cocefficients Zhj'
Morcover, this willl always be the case whatever the distribution
of demand since the probability of cqualing or cxceceding a given

demand level d decreases with increasing values of demand.

hj

1%

Suppose now that y,q, y21, ... are treated as unknown
variables in a lin2ar—programming problem subject only to (0)
and (7), where the objective s to maxilmize revenues. Lot us
suppose further that Y, 1s fixed. It 1s clear, since the co-

efficient of y,;, 1s largest in the maximizing form (8), that

yi11 will be chosen as large as possible consistent with (6) and i
(7); for the chosen value y,;, the next increment yp; will be

chosen as large as possible consistent with (6) and (7), etc.
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Thus, we nced only speclfy yy, by restrictions (6) and (7),

bhecause when th maximum 1s rcached the values of the variables

Jvi1s¥21, --. are precisely the lncremental values (6) assoclated

with Y,. Even 1f pagssenger capability Y, is not fixed, as in
Lhe case aboul to be considered, it should be noted that what—
cver be the valuen of Y, the values of yyy,y2; ... that minimize
an over—all cost form such as (14) below must moximize (8) for
J =1, so that the 1Incremental values of Yy will be generated
by Yii,¥ar,

The lincar-prorramming problem in the case of uncertain

demand becomes

UNCERTAIN DEMAND MODEL

Find numbers xij and er, and the minimum valuce of =z,
gatisfying the following, condlitions.
(11) Row Sums: XKyp + Xt oo Xy 0= Ay (t=1,2, ..., m)
(12) Column Dy Xt 4 PoXng b e + DX
Sums : 13714 2)7°2) mJ nJ
TyJJ+y?J+ + er (J—ly 2, ,1’]—1)
(15) XiJ > 0, (1 =1, , m; )= 1, , n)
0 < Yhy S th (h =1, y T3 ) =1, , n=1)

(14) Expected
Costs:

o~
il
N3

P
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Here Ry 1s_the value that expected revenue would be if sufficient

seats were supplled for all customers. Thus expected costs are

defined as total outlays (first term) plus the expected loss of
rcvenue due to shortage of seats (last two terms).

For the problem at hand, the bounds b, , and the expected

hJ
revenues YhJ per unlt for the "incremental varilables" Ypy can
be computed from the probability distributions of Table 6 via
(7) and (9).

The numerical values of the constants for the stochastlic

case are shown in Table 7.

Table 7
INCREMENTAL BOUNDS by , AND EXPECTED REVENUES k|, th
PER UNIT OF ASSIGNED PASSENGER—CARRYING CAPABILITY
_Route 1 Route 2 Route Route 4 Route 5
e LY U S0 LA [ by 15 ¥ s\ Pty Tt Pns | Ky s
1 200 15 501 13 ol 7 10f 7 5801 1
\ 2 201 10.4 {100y 9.1 | 20y 6.3 | 40| 5.6 | 20| 0.9
' 5 50| 9.8 * % 201 4.9 | 30| 4.2 | 20| 0.1
4 20] 5.2 * ¥ 20| 2.1 | 20| 2.1 * %
5 301 2.0 o 2C| 0.7 [2h0| 0.7 "

**Only two Increments for Route 2 and three increments for
Route 5 are needed to describe the distribution of demand.
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4, RULES FOR COMPUTATION

The work shect for determining the optimal assignment
under uncertalin demand is shown in Table 9. To form the new
row equations (11), the 2y cotries are summed to yield the a,
values given in the Adrcraft Avallable column. To form the

column equations (12), the x entries are multiplied by the

1)
correspondin, Pij’ Lhe th by -1, and summed down to yleld zero.
Step 1. To inltlate the computation any set of non-negative
values may be asslyned to the unknowns XiJ and th provided they
satisfy thc ecquations and thercby constitute a feasible solution.
Step 2. Clrcle any m + n of the Xy and Uh entries, where
m + n 1s the total number of row and column eguations. These
circles can be arbltrarily selected ecxcept that they must have

the property that 1f the fixed values assigned to the other non-—

circled varlables and the constant terms were arbitrarlly changed

to other valuecs then the circled variables would be determined

uniquely 1in terms of the latter. Such a circled sct of varilables
1s called a basic set of varlables: Lhe array ol coefliclents
associated with this set in the equations (11) and (12) is re-

ferred to as the basls In the theory ol the simplex rethod [H].

Note: One slmple way ol seclectlng a baslc set is shovwn 1n

Table 10. Onec Xii

each row corresponding to a row eguation, and one th 15 arbi-

entry 1s arbltrarily selected and circled in

trarily sclected and circled in each column corresponding to a
column equation. 1In general, 1t 1is suggested that entries be

circled that appear to have a chance of huaving a positive value
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in an optimum solution; for th values, the last entry in the
column that appears likely to be positive in an optimum solution
sﬁould be circled.

Step 3. For (1,J) and (h,J) combinations corresponding to
circled entries, compute implicit prices Uy and vJ assoclated

with equations by determining values of Uy and vJ satisfying the

equations
(15) g+ PygVy = Cyy (xiJ circled),
(16) 0 + (—1)vJ = —kJXhJ (th circled).

There are always m + n equations (15) and (16) in m + n unknowns

u, and v, that can be shown easlly to have a unique solution [u].

J
They can be solved by inspection, for it can be shown that the
system elther 1s completely triangular or at worst contalns sub-—
systems-—some triangular and some trlangular if one unknown 18

gpecified.*

Step 4. For each box corresponding to xiJ or th, compute

(17) 6iJ = (uy + levJ) — ¢y (for Xy box),

i

(18) 6,

hJ (0 - VJ) - (k¥ ) (for Yny box) .

J hJ

*This 1s the analogue—for the "generalized" transportation
problem (1), (2), (3), (4)—of the well—known theorem for the
standard transportation problem that all bases are triangular.
Its proof is similar.
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In practice, one of the 61J or SgJ is recorded; the others are
computed and compared with it, and the largest 1n absolute value
is used. e » sh ! aluec as-—
is used 1t can be shown [4] that if the xiJ or th value as

goclated with a noncircled entry 1s changed to

Xy # 0 or Yy * o (6 > 0),

the other nonclrcled varlables remalning invariant, and the

clrcled varlables adJusted, then the expected costs z will change

to z', where

2! =z F eGiJ or z' =z ¥ OéﬁJ

- I ~ ) ! 3 Q
Thus it pays to increase le or th if SiJ or 6UJ > 0, unless
th 1s equal to its upper bound bhj’ in which case no increcase
a ) [ %! g 1 as ‘ S
in th 1s allowed; also it pays to decrease xiJ or th i S
or SAJ < O unless Xij = 0 or th = 0, in which case no decrvase
is allowed.

) Test for Optimallty: According to the theory of the simplex

method [5] 1f the noncircled variables satisfly the folloaing
conditlonsgs

(a) cach one 1s at elther its upper or its lower bouund
value,

(b) the corrcsponding 61J or 6éj 1s less than or cgyual
to 0, it 1t ls at 1ts lower bound value, and

(c) the corresponding Sjj or SAJ is greater than or eyual

to O 1f 1t 1s at its upper bound value,

then the solutlon 1s optimal and the algorithm terminates. Other-

wlse there arc 6ij or SAJ ffor which a decrease or increase
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(depending on whether the sign 1s nesative or positive) in the
corresponding varlable 1s allowed; lel the largest among them
in absolute value be denoted by Ers or 6}8
Step H. Leaving all noncircled entries fixed except for
the value of the varlable corresponding to the (r,s) box deter—

mined in Step 4, modify the value of X g (or yps) to

> 0 (or &' > 0)

x ..+ 0 (or S 8) 10 b ra

I's

Xy — @ (or y . —-0) 16 6 <0 (or 6118 < 0),

wherc © > 0 1s unknown, and recomputc the values of circled
varliables as linear functlons of ©. Choose the value of © = ©*
ag the largest value possible consistent with keeping all basic
(circled) variables [whose values now depend on 6] between thelr
upper and lower bounds; in the next cycle correct the values of
the circled varilables on the assumption that © = 6*.

Also, 1f at the value & = 6* one (or more) of the circled
variables attains its upper or lower bound, in the next cycle drop
Just one such variable from the basic set and circle the vari-
able X g Instead. Should 1t happen that it is X g that attains
1ts upper or lower bound at & = 6%, the sct of circled varilables
1s the same as before; their values, howecver, are changed to
allow X to be fixed at 1ts new bound.

Start the next cycle of the iterative procedure by return—

ing to Step >.

e ——
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. NUMERICAL SOLUTION OF THE ROUTING PROBLEM

For our starting solutlion we used for values of the XiJ
Lhe best solution of the carlier study, assuming (ixed demands
*
cqual to Lhe expected values of the distributlon. These are

shown In Table 10, These w11l meet the expccted demands,

Xy

50 that YJ = b, excepl for Route Y; there 1s a deficit of 100

for thls route, and by () we have Ys = ©00. These YJ are broken

” down Into thre successive Incremental values shown below the
double line In Table 10; see Eq. (0).

Next, one of the variables In cach row 18 circled. 1In the
example, the selected variables are x,,, Xaz2, Xas, and X43; cach
appears likely to be in an optimal solution, though x4, may
turn out to be a better cholce than x43. Next, the last positive
entry in each column is circled; in the example, these are the
varlibles ya,, Y22, Y33, Yas, and y;s. In all, there are m + n
circled variables (9 in the example). The implicit values must

satisf{y the m + n,or 9, equations:

*In the humorous parody by Paul Gunther, entitled "Use of
Linear Programming in Capital Budgeting," Journal of the Opera-—
ticns Research Soclety of America, May, 1955, Mrs. Efficiency
wondered why Mr. O. R. dlId not start out with a good guess. It
wlll be noted that in this paper we have followed Mrs. Efficiency's
suggestion and have started with a guess at the final solution
rather than golng through the customary use of artificial vari-
ables and a Phase 1 of the slinplex process.
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Uy + pravy C1 (pri=10, ¢y,=18),

Uz 4 paaVz = Caz (P22=10, c22=19),

Uz + pPasVs = Cas (pas=29, cas=0),

Ua + PasVay = Cag (Pa3=22, c42=1T7),

O+ (-1)v, = —k;¥3, (k1¥3,=9.8),

O+ (=1)va = —ka¥a2 (ka¥22=9.1),

0+ (=1)va = —k3¥33 (ka¥a3=4.9),

0+ (=1)vy = —kq 344 (ke¥44=2.1),

0+ (=1)vs = —Ks¥,5 (ks¥,s=1.0).

This permlts the computation of 61J and SAJ5 see (17) and (18).
As a check, Sij = 0 and SAJ = 0 for (1,J) and (h,J) corresponding
to circled variables. The 6iJ or 6AJ of largest absolute value
is

Ba0 = [=70 + 15 (2.1)]-14 = —8.5;

hence a decrease in the varlable xz4 wilth adjustments of the
circled variables will result in a decrease 1n the expected
costs by an amount of 58.9 units per unit decrease in xaq. If
X24 = b 1s changed to xp4 = 0 — 8, then, in order to satisfy
the column 4 equation, the clrcled variable yu44 = 10 must be
modified to ygq = 10 — 196 (all other variables in column 4 are
fixed). Also, to satisfy the row 2 equation, Xz = 8 must be
modified to xpp = 8 + ©; this in turn causes ysp = 70 to be

changed to yzz = 70 + 100 in order to satisfy the column 2

equation. The largest value of 8 is 6* = 10/15, at which value

Yaa = O.
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The pumertensl valuces of the varlables appearing in Table 11
are obtalne ! Urom those of Tuble 10 by setting @ = 6% = 10/15.
The variable <uy becomes o new olreied variable In place of yaq,

which nit ite lower bound,

"oy Lhe other varlables to be
clreloed remaln the same w6 In Table 10, Computing the new set

of Ty LUVL prices, d4e see that the 811 o!f larsest absolute value

tnat can be tnereased or decreased (according to the sipn of Sij)
18 “Ooa 25 Chansdns Xzs Lo 0 = @ regquires that the variables
Xop, Youo,ind ya4 be modified ns srown In Table 11. The maximum

value of O ls © - ©* = 20/14, at which value we have yas = O.

The new solution, in whlch <3 replaces yas ag a clreled varilable,

Is <Jven in Table 12, where the decrcase In the nonclrcled vari-
qole wyy couses chaney In the varlables x43, X2, X23, Y31,
and yan. The larcest value of © s )/1o, at which value yao»
hits L5 upp:r bound bas 100,

In the passace tfrom Table 135 to Table 14 we have taken a

"wouble" step.  The maxlmun Increase s € = 80/20, at wnlch polnt

¥io Alts Lts vwpper bound by = %0, 1L Ls onsy to see that if

ne<t the Lnerenental vartable yoe 1o increasod then Ba, nssoclatod

Wit ®gw snouli be concei to Sgp 4 20 (Fg - Tauliks = oy, +
20 = 0 Loy therelfore, LLots ceonoml:ial Lo increase Yag
v owell ws yye. Howover, it cun be shown that the siyn of Bap
woula bhecome positive L7 the next incronent, yas, were consicered.
The naximun vidlue o @ = 8% 13 100/2).

In the passa e from Table 14 vo 0, L1t w111l be noted that
tne variable yaa, wnlch nad been aropped earller, 1s wsaln brougnt

into the solution. The maximum value of © is 22/20, atv which

————— e
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value yas reaches 1ts upper bound, so that the new solution,
given in Table 15, has the same set of circled varlables and
hence the same 1mplicit values as those in Table 14. Moreover,
the solution 1s optimal since all nonclrcled variables are elther
at thelr upper or lower bounds—those at upper bounds have cor—
responding SiJ > 0 and those at lower bounds have SiJ < 0.

In comparing this solution (Table 1%) with the optimal
solution for the fixed—demand case (Table 5), 1t 1s interesting
to note that the chlel difference appears to be a general ten-—
dency, in the case of distribution with sharp peaks, to shift

the total seats made available on route to a mode of the dis-—

tribution rather than to the mean of the distribution. The

total seats made avallable on routes with f{lat distributions
of demand, on the other hand, appear to be at the highest level
attainable with the residual passenger—carrylng potential.

To compute the expected costs of the various solutions,
the first step (sec Ey. (14)) is to determine what the expected
revcnues RO would be 1f sufficlent seatlng capaclty were furnished
at all times to supply all passengers that show. From Table 2

it 1s easy to sece tnat

R 13(250) + 15(120) + 7(180) + 7(90) + 1(600) = 7300,

0

it

so that the expected revenue would be $7,3500,000.
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Table 8
COMPARATIVE COSTS OF VARIOUS SOLUTIONS
Expected
Revenues Net
For Expected Expected
Seats Lost Operating Cost
Supplied Revenues* Costs (Thousands )
Table (1) (2) (3) (2) + (3)
10 —04 5h 706 900 1,006
11 5574 725 901 1,027
12 —5007 093 901 1,594
14 ~06 58 002 899 1,501
it —u6Hh ] n%9 883 1,542
19 —0459 041 885 1,542

"Data Lr column (2) arc obtalned by sublracting the
cxpected revenues for seats supplied, column (1), from R, = 7300
= tne ecxpectea revenues 10 an unlinlted number of seats wWere
supplied.

1t 13 scen that the solution presented 1n the carller paper
[1}, assuming demands to be exactly equal to thelr expected values,
has a net expectoed cost ol $1,u00,000. [It 15 interesting to
notc that If the demands werce [lxed and cqual to thelr cxpected
values, the costs would be only $1,000,000 (sce Table 4). The
07 per cent increasc in net cost for the variable—demand case
15 due to 15,400 additional passengers (on tne average) being
turned away because of the distributions of demand assumed 1in
Table o.] The successive improvements 1n the solutlon given in
Tables 10 to 1 reduce the net expected costs from $1,666,000

to $1,724,000 ror the optimul solution.

=
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In the [llustration the best solutlon obtained by pretend-
Ing that demands are Mxed ot these expected values has a 9 per
cent hlchoer oxpecsled cost than thal for the best solution obtained
by usling the assumed Jdistributions ol demand. It 1s also seen
that very little additlonal corputational effort was required

Lo take zccount of thls uncertalnty of demand.
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JORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
e Route
(1) (2) (5) (4) () (o)
Type N. Y N. Y. N. Y. |N. Y. [N. Y. Sur— Alr-—- Im-
ol to (@) Lo Lo to plus craft plicit
Ar- L. A L. A. Dallas| Dallas {Boston | Air—- Avail- | Prices
_eraft [1-stop | 2—stop| O=stop] 1-stop|O-stop | craft |able Yy
A1 Lr2 X113 X4 X115 X186 10
(.) N PPyg=Ln 1t 24 25 81 0
o ‘LLl_ig “:;_"__*tj'_m 1) 10 0 u,
| Koo PR Xo4 X25 X26 e
(0) B = g 1h X 7 0
EREE P 9 0 Up
Lap ! IX34 X35 X3g 25
(j) C R L)‘ "R 7 29 0
10 | 9 0 0 Ug
<41 K42 an X4 4 X45 X460 )
(W) D 9 11 22 17 H5 0
17 1|7 ] 10 0 Ug
'Iﬁcrei-yTTiéOO'y:2§§é'&}33T&O y;;gio N15§b80 o L &
ment . 1 1 i ] o
(1) - - - - -
-15 -1 | =7 = =]l | ‘ 0
_ ! LN SN I ‘
y21<”0 32°<100p23\20 Ya4<t0 2s5<20 e
(2) -1 —1 -1 —1 =1 xx
-10.4 -0.1 —1. ) — D -.9 0
31 <50 Ma3<20 1y34<50 [yas<20 L s
(j) _1ll kX ! -1 . —3 X KX
|
~9.9 [ b= 9 —}L 2 — 0
/41420 ’ -/43;80 ¥y44<20 e
(“) -,’ A e i 1 xa [
.2 | I -2 .1 0
/5150 r'53§20 :/5.;52140 * A
= L LI 0 -1 PR ] x Kk
2.5 | —7 | = 0
-NC"C 0 0 0 ‘ 0 0 * 4K * %A P
Im—
::11Cit * A A X ¥
Prices v, Vo ¥ g Vg Vg 0
Vv'
A

ut ~

Box not uscd because correspondlinig row or column has no cjuatlon,
or e¢lsc because aircraft type cannot 'ly required range, or [ewer in-
crecents are needed to describe the distribution of demand on the route.
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B24 = H8.4, 8 = 10/1°, Expected Cost = $1,060,000
Route
(1) (2) (5) () () (0)
Type N. Y. N. Y. IN. Y. N. Y. |N. Y. Sur-— Alr— ITm—
of to to to to to plus craft plicit
Alr-— L. A, L. A. |[Dallas | Dallas |Boston | Alr— Avall-| Prices
craft Ji-stop | 2-stop|0-stop | 1-stop [O-stop | craft |able !
(1) A 16 15 28 25 81
) 18 21 | 18 ] 19 10 0 —139_
£16 | H—6 19
(2) B 10 | 14 1° 57
1 e 14 9 0 — 76
|
7.8 ' ! 7.2 29
(3) ¢ | xe 5 | ' 7l 29
10 ll -l——-—-»—9———-—-;- 6 A O — 25
10 D) . | 15
(h) D 9 11 | 22 17 55
17 15 | 17 |1y 10 0 - 9
Incre— ROO |,0 140 10 £,00 X oxx
T I I R g
—15 15 5 T ~7 - 0
20 (19+108 |20 4o | Y
(2) -1 —1 — —] —1|  xwx
a —10.4 | =9.1 | 6.5 ~5.0 ~.9 0 _
U @ !jO T3
()) -1 * A K _1i -1, -1 X oH %
-9.8 B R R B 0
|
|@_]L)e’: * Ny
(1;) _ KX -1 _]| N '
5.2 —2.1 -2.1 0
* * X
(5) -1 X o e -] -1 P *x ¥
—2.6 — o —.7 0
Net O O O O O * XK * ® K * H R
Im— _
plicit ‘
Prices | 9.8 9.1 4.9 2.1 1 0 e L8
Vl
J - 4
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WORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND

823 = 23.4, 8 = 20/1h, Expected Cost = $1,627,000
Route
(1) | (2) (3) | (%) (5) | (6)
Type N. Y. N. Y. |N. Y. N. Y. [N. Y. Sur- Alr— Im—
of to to to to to plus craft plicit
Alr— L. A. L. A. iDallos | Dallas|{Boston | Alr— |[Availl-| Prices
craft {l-stop [ 2—stop|O-stop | 1-stop|O—stop | craft |able Yy
¢ o
(1) A 10 1) 26 25 81
18 21 1 10 10 0 -159
A= i > .
8.0e [-6 (D 19
(2) B ¥ 10 14 1 o7
1¢ 1t 1 S 0 —[0
25
(j) C *xx 3 T 7 29
10 ) b 0 =23
10 ) 15
(4) D 9 11 22 17 o0
17 16 17 15 10 0 =91
Incre—1200 0 140 10 00 E
ment :‘ ]; ll | 13 1 X ¥ K
(1) ‘ T - - B
=15 =l A —1 0
.20 Th0e 20 o | o
' N
(I R ] | e
El_.]()'.; f =1 il 0 -} 0
. ;
[ , Y, e g LI
® | @ueln
()) ; RN - -1 yorox
¢ 9.4 L =) —i.2 —. Q
(};) ! -1 ,oE o 1 =1 4l & TR
—.0 1| 2.1 0
X oy
!
()) -1 X% ) ] R XXX
—2.0 - ./ ~ .7 0
N-’t O O O O O #* ¥ % * % ¥ X ¥ ¥
Tm—
plicit ‘e x
Prices 9.8 0.1 Iy L ] 0 b
V)
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Table 12 Cycle 2 —35-
JAORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCKRTAIN DEMAND
Eir = -H0.8, & = 9/1u.  Expected Cost = $1,594,000
Route
(1) | (2) (5) () H) (6)
Type |N. Y. N.o Y. IN. Y. N. Y. N. Y. | Sur— [Alr— Im—
of to to to Lo to plus craft | plicit
Alr— L. A L. AL [Dallas | Dallas| Boston| Alr- Avall- | Prices
craf't |l-stop | 2-stop |0-5top | 1-stop| O-stop}cralt {able Uy
(i9) 10
(1) A 10 15 28 25 81
o4 e a8 e f1o f o0 f | 159
QoD +1683.6)-166 O 10
(2) B | s« 10 1h ] Sl
L2 16 14 ) 0 — /o
=5 _
7.8 17.2 24
(j) & XK X XX l 7 29 0
10 . 0 0 —25
10-6 510 ’ 1Y
(h) D 9 11 22| 17 by 0
17 10 17 | e, 10 0 128
V"
Incre— {200 S0 ‘]NO 10 LE%» nak
ment ‘
7 -1 -1 -1 1 1| awn
(1) |
-15 =15 1 -~/ -1 Q
20 @)+168 oo 140 o
(2) —] —{ -1 — ] ~1| xxs
ond —4 .1 0.3 l 0 —.9 0
G 1 50 .
6#9 09 !)
(5) | -1 e Sl i
—y.8 .9 .2 =0 0
XM R
(l;) -] 'y -1 - XX XK
2 el 2l 0
A N K
(L}) -1 KK -] | XK K £ x N
—2.0 -7 | -7 0
Net 0 0 —0 0 ol **=* * A K A *
Im-
plicit 9.8 9.1 6.6 6 1 0 X xR * %A
Prices |
. ]

S—

%




RM—1¢555
12=7-6
_ ‘}{)_..

Table 15 - Cycle

7

J

AORK. GHEET FOR DiTERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND

Bao = H.5, O = 100/29 = 5.4, Expected Cost = $1,:01,000
Roule
(1) (2) (9) (") () (v)
Type N. Y. H. Y. N. Y. | N. Y. N. Y. | Sur- Alr- Tim—
ol to Lo Lo to Lo plus craft | plicit
AMr- L. . L. A, Dallas| Dallas | Boston Alr— Avall-| Prices
ralt o Jl-stop | 2-stop| O-stlup| 1-stop|{ O-stop, craf't able Uy
O 0
(1) A 10 1 a2 Q) 81 Q
& 3 2 g e 10 0 -1 30
ey B 10 1h ‘ 7 0
. ) 1 S 0 10
- @ ls L
d—@ 17 .240 %)
(3) ¢ | » Sl / 29 0
10 9 §) 0 -2)
ol ZEEN
= s a4 5
.39 )\./H.)@ - 1
(4) D g 11 22 17 HY9 0
17 10 17 1 10 0 =71
_____ - e e e e =
Incre— 1200 50 0 10 $£§2+299 LR
ment s
; - — -1 -1 - Sk
(1) | ]
| <15 15 -7 = - 0
t
20 100 210 0
g \' rD L IR I |
(1) ~ - - N
— 0L ) 2057 I e - 0
> 78 50 XE
, | : | 1 ]
(5) - ' = -1 -
-0 H g 2 — O
. | 1 v . .
() ' -
0 —2 —-2.0 0
—_ — —— ____f — —_— ——
({_) _ N . - % P
_),!j - . —.7 - -.7 — O-_.__
Net o ! 0 0 | 0 o |
Ini— i ;
})1LClC | . 3 | '., «‘ C Ao LI
Prices 9.8 ' g
Vi l .
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Tible 14 - Cycle —37—
AORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
8ia = —.1, 8 = 20/22 = .9, Expected Cost = $1,542,000
Route I
(1) (2) (5) (4) (5) (0)
Type N. Y. N. Y. N.o Y. [N. Y. N. Y. |Sur— Alr— Im—
of to to to to to plus craft |plicit
Alr-- L. A. L. AL Dallasiballas | BostonlAlr— Avall-| Prices
cratt |l-stoup |[2-stup | O=stop|1-=stop | O-stop|craflt able Uy
® L
(1) A 1) i) ) 25 81 0
I B E T ?__ i 10 0 —150
CHY D O )
(o) B 10 ' ) 7 0
S I h (i O —_— v(_
20,7 2
(5) ¢ TN . 29 0
_____ _’ 10 [ O O - LC)
@—6 @M) ]
('») ) J 1 Uz 17 : 0
SO U N IR L 10 0 = I
Iricre- ROO [0 10 0 £0 wEa
nL N - = -1 (IR
(] ) L |
-1 ~13 - =i C
k() %‘uu 20 'O 20 R
} () =1 - ~ - Sl
'AC-" ! - . =) 3 ““’_—‘ .. | —_— ol
F s 1220 50 |
() L A . _c REET |
@ : + 1 —~et ,) -_ : \J
; L e
P :
( ') | - ’ '
~ | i ) "' ! G
T
‘ i { | S
(-’) _ X » ‘ _ i X s [ |
*‘J 0 a) - 1§
N\."L, O () (, U O » XA oA g RPN
= '
p] 1\"1‘\; 0 v‘ f ya s (:v
Pr‘i(‘,l}.‘) 3 5.5 ! £ oo 0 od 0 [IE NS R
AW t
A o S e = PSS W —_
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_58z ’ Table 149 - Cycle 4
: (OpLimalg
WORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
Minlmun Expected Cost $1,524,0Q0

Route
(1) | (2) (5) (4) (5) | (6)
Type N. Y. N. Y. [N. Y. N. Y. IN. Y. Sur— [Air- Tm—
of ‘to to to - | to to plus craft plicit
Alr— iL. A. L. A. ;Dallas { Dallas|Boston { Alr— |Avall-| Prices
craft |l1-stop | 2—stop [0—stop | 1-stop|O—stop | craft [able Uy
© T
(1) A | 16 15 28 25 81 0f
‘ 18 21 118 10 10 0 -139
| 12.8) (9 (L) i 19
(2) B § a=v 10 i 15 ;7i 0
|15 10 1 9 | o | ~ 40
© 5y e
(5) @ kK bil XK ¥ 7 29l 0,
| 10 | 9 6 | o0 - 18
(4) D 9! 11 22 17 55! 0.
Y 16 17 15 10 0| - 11
Incre-:200 50 1140 10 480 BT
ment il BE 1 1 IR
(1) i . ) ! | i
3 —1j —‘l lj S /..L ‘{ 1 _1 |L ; O
20 100 20 4020 : | 5
(@) 1 1 1| 1 SIERLY
} ~10 .4 e L R e ! —5H,0 -.9 i | 0
" ] ’ i T r * * *
(7 | 20 50 ! |
- 10 ass _ _ ~i * %X I
(3) | -1 T 1 '
| -9.8 | . i —.2 —.1 [ % 0
E : . { ! * %
l | |
(l;) | 1 TR ! 1 1 Xk K %K o¥
5.2 120 | 2 | | 0
—“ ! !
! ! | LB
(’D) -1 ¢ onon ' 1 —] XK o LR
~2.6 —.{ ~.7 0
Net 0 0 0 0 0 | oran "
Im— )
plicit 9.8 5 4 5.5 8 0 o oy
Prices
v L
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